Molecular Architecture of the S. cerevisiae SAGA Complex
نویسندگان
چکیده
منابع مشابه
Molecular architecture of the S. cerevisiae SAGA complex.
The Saccharomyces cerevisiae SAGA complex is a multifunctional coactivator that regulates transcription by RNA polymerase II. The 3D structure of SAGA, revealed by electron microscopy, is formed by five modular domains and shows a high degree of structural conservation to human TFTC, reflecting their related subunit composition. The positions of several SAGA subunits were mapped by immunolabeli...
متن کاملArchitecture of the S. cerevisiae SAGA transcription coactivator complex
(Note: With the exception of the correction of typographical or spelling errors that could be a source of ambiguity, letters and reports are not edited. The original formatting of letters and referee reports may not be reflected in this compilation.) Thank you for submitting your manuscript "Architecture of the S. cerevisiae SAGA transcription coactivator complex" for consideration to the EMBO ...
متن کاملArchitecture of the Saccharomyces cerevisiae SAGA transcription coactivator complex.
The conserved transcription coactivator SAGA is comprised of several modules that are involved in activator binding, TBP binding, histone acetylation (HAT) and deubiquitination (DUB). Crosslinking and mass spectrometry, together with genetic and biochemical analyses, were used to determine the molecular architecture of the SAGA-TBP complex. We find that the SAGA Taf and Taf-like subunits form a...
متن کاملThe S. cerevisiae SAGA complex functions in vivo as a coactivator for transcriptional activation by Gal4.
Previous studies demonstrated that the SAGA (Spt-Ada-Gcn5-Acetyltransferase) complex facilitates the binding of TATA-binding protein (TBP) during transcriptional activation of the GAL1 gene of Saccharomyces cerevisiae. TBP binding was shown to require the SAGA components Spt3 and Spt20/Ada5, but not the SAGA component Gcn5. We have now examined whether SAGA is directly required as a coactivator...
متن کاملThe Saccharomyces cerevisiae Srb8-Srb11 complex functions with the SAGA complex during Gal4-activated transcription.
The Saccharomyces cerevisiae SAGA (Spt-Ada-Gcn5-acetyltransferase) complex functions as a coactivator during Gal4-activated transcription. A functional interaction between the SAGA component Spt3 and TATA-binding protein (TBP) is important for TBP binding at Gal4-activated promoters. To better understand the role of SAGA and other factors in Gal4-activated transcription, we selected for suppres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Molecular Cell
سال: 2004
ISSN: 1097-2765
DOI: 10.1016/j.molcel.2004.06.005